# 控 - 控制框架

工业生产中控制逻辑的复杂程度千变万化,往往需要具体行业专业人员完成专门的设计,从而提高了行业的技术壁垒,严重阻碍了工业领域的自动化和智能化升级。

XiUOS 应用程序框架中的“控”子框架从“控制需求”本身出发,同时面向专业用户和非专业用户,通过对“控制需求”本身和复杂的工业控制流程进行深入分析,通过软件定义的方式,提出以“控制元”为核心的“控”制流程。具体地,本设计通过解耦复杂的工业控制流程,将工业生产中的各种复制工业控制流程分解为各种类型的“控制元”命令,这些“控制元”的命令以软件API的形式交互给用户使用,从而屏蔽了以 PLC 为中心的各种控制器的巨大差异,形成了方便易用的接口,降低了专业的技术壁垒,加速了工业领域的智能化升级。

# 1. XiUOS“控”制框架的关键数据结构定义和解析

struct xs_PlcAbility {
    const char name[XS_NAME_MAX];       /* name of the PLC ability instance */
    enum xs_PlcCtlType type;            /* type of control the plcable to excute, such as HSC or PID control */
    char address[XS_PLC_ADDRESS_MAX];   /* The address for this function in the PLC*/
    struct xs_PlcDevice *pdev;          /* corresponding PLC device */
    struct XS_DOUBLE_LINKLIST_NODE  link;/* link list node */
};

name成员是一个可读的名字,用于唯一标识一个xs_PlcAbility结构。
type成员表示该xs_PlcAbility可控制的类型,用一个枚举变量表示:

enum xs_PlcCtlType {
    XS_PLC_CONTROL_TYPE_HSC = 0,    /* high-speed counter */
    XS_PLC_CONTROL_TYPE_PID ,       /* proportional,integral,derivative */
    XS_PLC_CONTROL_TYPE_PHASING ,   /* phasing control*/
    
    /* ...... */
    XS_PLC_CONTROL_TYPE_END,
};

由于 PLC 里控制指令执行都是向数据模块DB写数据,需要知道该函数功能对应的数据块地址,这个用address标识。pdev成员表示该xs_PlcAbility所属的xs_PlcDevice结构,其具体定义在下文给出。 最后,在系统中不同控制类型的xs_PlcAbility被分别组织成不同的双链表,如高速计数器xs_PlcAbility链表、PID控制xs_PlcAbility链表等,使用的链表节点即为link成员。

struct xs_PlcDevice {
    const char name[XS_NAME_MAX];           /* name of the  device */
    struct xs_PlcInfo  info;                /* PLC info, such as vendor name and model name */
    struct xs_PlcOps  ops;                  /* filesystem-like APIs for data transferring */
    struct xs_PlcInterface  interface;      /* protocls used for transferring data from program to PLC */
    structXS_DOUBLE_LINKLIST_NODE link;     /* link list node */
};

name成员记录 PLC 设备在系统中的名字,用于唯一标识一个xs_PlcDevice结构。

struct xs_PlcInfo {
   uint32_t ability; 
   const char *vendor;
   const char *product_model;
};

info成员记录 PLC 设备的一些属性信息,包括 PLC 的能力ability、厂家名vendor与型号product_model,其中ability用一个位图表示该 PLC 设备可以控制进行的操作:

#define XS_PLC_ABILITY_HSC ((uint32_t)(1 << XS_CONTROL_TYPE_HSC))
#define XS_PLC_ABILITY_PID ((uint32_t)(1 << XS_CONTROL_TYPE_PID))
#define XS_PLC_ABILITY_Phasing ((uint32_t)(1 << XS_CONTROL_TYPE_PHASING))
/* ...... */

ops成员包含统一的、类似文件系统的API,用于和 PLC 设备通信,进行实际的数据读写和对 PLC 设备实现控制功能。在使用一个 PLC 设备前后需要打开(open)/关闭(close)该 PLC,实际为建立和关闭连接;read、write分别用与从 PLC 接收数据与向 PLC 发送数据,ioctl用于向 PLC 设备发送控制指令:

structxs_PlcOps {
   int (*open)(struct xs_PlcDevice *pdev);
   void (*close)(struct xs_PlcDevice*pdev);
   int (*read)(struct xs_PlcDevice*pdev, void *buf, size_tlen);
   int (*write)(struct xs_PlcDevice*pdev, constvoid *buf, size_tlen);
   int (*ioctl)(struct xs_PlcDevice*pdev, intcmd, void *arg);
};

interface成员表示用于与 PLC 进行通信时所用到的协议:

struct xs_PlcInterface {
enum xs_plc_protocol  protocol;
enum xs_plc_transport transport;
};

xs_plc_protocol和xs_plc_transport是两个枚举类型,标识 PLC 设备和自研的两种终端之间用到的通讯协议,其定义如下:

enum xs_plc_protocol{
    AB_ETH = 0,
    ADS_AMS,
    BACnet_IP,
    DeltaV,
    DF1,
    EtherNet_IP,
    Firmata,
    KNXnet_IP,
    Modbus,
    OPC_UA,
    S7,
    Simulated,
};
enum xs_plc_transport{
    TCP = 0,
    UDP,
    Serial,
    Raw_Socket,
    PCAP_Replay,
};

TIP

注意两者间有对应关系而不是随意组合,如S7(STEP 7)只能采用TCP协议,而Modbus支持tcp/serial/raw socket/pcap replay,可以定义一个函数检查类型: xs_PlcProtocolCheck(struct xs_PlcDevice*);

最后,系统中所有注册过的 PLC 设备被组织成一个双链表,即link成员。

# 2.XiUOS PLC 控制框架驱动开发

以HSC高速计数器为例。控制框架针对每个具体的控制类型将xs_PlcAbility进行扩充,采用类似面向对象的手段添加其他必要成员,如:

struct xs_PlcAbilityHsc {
    struct xs_PlcAbility  parent;/* inherit from xs_PlcAbility*/
    uint32_t (*write)(struct xs_PlcAbilityHsc *abl, void* param);
    void (*read)(struct xs_PlcAbilityHsc *abl, void* param)
};

实现xs_PlcOps中的数据通信API,具体实现细节取决于 PLC 型号,无法实现的API可以置为NULL:

structxs_PlcOpshsc_example_ops = {
    .open = hsc_example_open;
    .close = hsc_example_close;
    .read = hsc_example_read;
    .write = hsc_example_write;
    .ioctl = hsc_example_ioctl;
};

实现xs_PlcAbilityHsc中的write和read接口,该接口用于向 PLC 的HSC模块发送控制参数和读取返回参数。在实现过程中可以使用xs_PlcOps中的接口与 PLC 进行通信。

其中param为一个void类型指针,由于要写入的命令参数和要读取的返回参数往往不止一个,可以根据不同的控制类型定义不同的数据读写结构体,最后使用结构体指针进行强制类型转换即可。例如对于HSC:
定义数据写入结构体:

struct hsc_write{
	char id[id_max]; /* id_max is to identify the max HSC ctrl instruction of HSC */
	int cmd;         /* HSC control type */
};

其中id用来标识HSC,cmd表示要发送的具体指令,具体的指令可以用一个枚举类型来表示:

enum HscCmdSubType{
	EnHsc = 0,   /* enable HSC */
	EnCapture,   /* enable the function of capturing the inputs */
	EnSync,      /* enable the function of synchronous inputs */
    EnHSCRESET, 
    En_CTRL_UPTODOWN ,

    ... ...
};

同理,其他的类型

enum PIDcmdSubType{
    ENHsc = 0,
    EN_XS_PLC_CONTROL_TYPE_PID_COMPACT,
    XS_PLC_CONTROL_TYPE_PID_3STEP ,      /* valve of motor-driven */
    ... ... 
};
enum PHASEcmdSubType{
    ENPhase = 0,
    XS_PLC_CONTROL_TYPE_PHASING_MC_HALT, 
    XS_PLC_CONTROL_TYPE_PHASING_MC_HALT_MOVE_ABSOLUTE,
    ... ...
}

定义数据输出结构体:

struct hsc_read{
	uint32_t  value; /* the main value you want to get, depends on the cmd */
	bool done;       /* indicate whether the SFB has been done */
	bool busy;       /* indicate whether the function is busy */
	bool error;      /* indicate whether there is error */
};

value是指定返回的变量值,与结构体hsc_write发送的指令cmd类型有关,down/busy/error是一些状态指示位。
如我们要使用write函数向 PLC 发送HSC类型的控制指令:

struct hsc_write  write_example;  

struct xs_PlcAbilityHsc hsc_example进行必要的初始化后,用强制类型转换作为参数传递给write函数:

hsc_example ->write(&hsc_example,(struct hsc_write*)&write_example);

最后,将 PLC 设备添加到 PLC 框架。分别填充xs_PlcDevice与对应物理量的xs_PlcAbility结构(高速计数器即为xs_PlcAbilityHsc),并依次使用xs_PlcDeviceRegister和xs_PlcAbilityRegister函数将其注册到 PLC 框架:

int  xs_PlcDeviceRegister (struct xs_PlcDeviceRegister *pdev);
int  xs_PlcAbilityRegister (struct xs_PlcAbilityRegister *abl);

extern struct  xs_PlcOps plc_example_ops;
extern uint32_t  plc_example_write(struct xs_PlcAbilityHsc *abl, void *param);
extern void      plc_example_read(struct xs_PlcAbilityHsc *abl, void *param);

/* declare xs_PlcDevice and xs_PlcAbilityHsc objects */
struct  xs_PlcDevice       hsc_example_pdev;
struct  xs_PlcAbilityHsc   hsc_example_abl;

void  register_example_plc()
{
    /* initialize and register the xs_PlcDevice object */
    memset(&hsc_example_pdev, 0, sizeof(xs_PlcDevice));

    hsc_example_pdev.name = "plc1";
    hsc_example_pdev.info.ability |= XS_PLC_ABILITY_HSC;
    hsc_example_pdev.info.vendor = "Siemens";
    hsc_example_pdev.info.product_model = "yyy";
    hsc_example_pdev.ops = &hsc_example_ops;
    hsc_example_pdev.interface.xs_plc_protocol = S7;
    hsc_example_pdev.interface.xs_plc_transport = TCP;

    xs_PlcDeviceRegister(&hsc_example_pdev);

    /* initialize and register the xs_PlcAbility of hsc object */
    memset(&hsc_example_abl, 0, sizeof(xs_PlcAbilityHsc));

    hsc_example_abl.parent.name = "hsc_1";
    hsc_example_abl.parent.type = XS_PLC_TYPE_HSC;
    hsc_example_abl.parent.pdev = &hsc_example_pdev;
    hsc_example_abl.read = hsc_example_read;
    hsc_example_abl.write = hsc_example_write;

    xs_PlcAbilityRegister((struct xs_PlcAbility *)&hsc_example_abl);
    /* initialize and register otherxs_PlcAbilityobject */
    memset(&other_example_abl, 0, sizeof(xs_PlcAbilityOther));
    ... ...
}

# 3. XiUOS PLC 控制框架的使用示例

PLC 控制应用开发者使用 PLC 控制框架提供的API操作 PLC,PLC 的API可以分为通用API与控制类型特有API。通用API用于 PLC 的获取、打开与关闭,控制类型特有API用于不同种类 PLC 的不同控制指令。以具有HSC高速计时器功能的 PLC 为例:

/* generic API: find a plcability instance by its name */
struct xs_PlcAbility *xs_PlcAbilityFind(const char *name);

/* generic API: open/close a plc ability instance */
int  xs_PlcAbilityOpen(struct xs_PlcAbility *abl);
void   xs_PlcAbilityClose(struct xs_PlcAbility *abl);

/* HSC API: send control parameter to PLC and read HSC condition*/
uint32_t   xs_PlcHscWrite(struct xs_PlcAbilityHsc *abl, void *param);
void     xs_PlcHscRead(struct xs_PlcAbilityHsc *abl, void *param);

在发送命令和获取数据前,需要先获取并打开要使用的 PLC;PLC 打开后可以随时对 PLC 发送指令和对其数据进行读取;使用完毕后,须关闭 PLC。完整的使用过程示例如下:

int  main(int argc, char *argv[])
{
    int ret;
    structxs_PlcAbility *abl;
    structxs_PlcAbilityHsc *hsc_abl;

    /* get the Plc hsc ability instance */
    abl = xs_PlcAbilityFind("hsc_1");
        XS_ASSERT(abl->type == XS_PLC_CONTROL_TYPE_HSC);

    /* open the Plc hscability instance */
    hsc_abl = (struct xs_PlcAbilityHsc*)abl;
        ret = xs_PlcAbilityOpen(abl);
    XS_ASSERT(ret == XS_EOK);

    /* initialize the write and read data structure */
    structhsc_write write1={
        .id = "xxx";
        .cmd = EnHsc;
        };
    struct  hsc_read read1;	
    /* send control param to the HSC, just for demonstration */
    xs_PlcHscWrite(hsc_abl,write1);
    /* read data from hsc, just for demonstration */
    xs_PlcHscRead(hsc_abl,read1);
    if(!read1.error)
        xs_kprintf("Read data from PLC HSC is \n", read1.value);
    else 
        xs_kprintf("Read data from PLC HSC wrong!\n")
    xs_PlcAbilityClose(abl);

    return  0;
}
Last Updated: 9/26/2021, 8:43:32 PM